7/27/2020 Getting started - SpecSync for Azure DevOps Documentation

Getting started

SpecSync for Azure DevOps synchronizes the scenarios of a SpecFlow project with the test
cases of a Azure DevOps project. For the supported Azure DevOps versions, please check the

Compatibility list.

The necessary steps are slightly different depending on whether you use SpecSync with
SpecFlow (.NET) or with other Gherkin-based BDD tools, like Cucumber. Please follow the guide
for your context.

» Getting started using SpecFlow
* Getting started using Cucumber or other Gherkin-based BDD tool

https://specsolutions.gitbook.io/specsync/getting-started

m

https://specsolutions.gitbook.io/specsync/compatibility
https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow
https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

Getting started using SpecFlow

This chapter goes through the setup and the synchronization steps for SpecFlow projects. For
non-SpecFlow projects, like Cucumber, please check page Getting started using Cucumber.

SpecSync is a synchronization tool that can be invoked from the command line. For SpecFlow
projects, there is also a SpecFlow plugin that enables synchronizing automated test cases if that
is necessary. This guide shows you step-by-step how the synchronization tool and the SpecFlow
plugin can be configured.

Preparation

For setting up SpecSync for Azure DevOps, you need a SpecFlow project and a Azure DevOps
project. For the supported Azure DevOps versions, please check the Compatibility list.

In our guide, we will use a calculator example (MyCalculator) that uses SpecFlow v2.3 with
MsTest. The SpecFlow project is called MyCalculator.Specs . The sample project can be

downloaded from GitHub.

For a synchronization target we use an Azure DevOps project:
https://specsyncdemo.visualstudio.com/MyCalculator . (An Azure DevOps project for

testing SpecSync can be created for free from the Azure DevOps website).

Installation

The SpecSync for Azure DevOps synchronization tool can be installed by adding the
SpecSync.AzureDevOps package from NuGet.org:

PM> Install-Package SpecSync.AzureDevOps

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 1/10

https://github.com/gasparnagy/specsync-basic-calculator-specflow
https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber
https://azure.microsoft.com/en-us/services/devops/
https://specsolutions.gitbook.io/specsync/compatibility
https://www.nuget.org/packages/SpecSync.AzureDevOps

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation
The package contains the synchronization command line tool (
tools\SpecSync4AzureDevOps.exe) and some documentation files (docs folder).

It also adds a specsync4azuredevops.cmd script file to the project for calling the SpecSync
command line tool conveniently. SpecSync can also be used without the script file, but in this
case you have to provide the full path of SpecSync4AzureDevOps.exe downloaded into the

NuGet packages folder.

@ NuGet does not allow adding content files for SDK-style .NET projects (e.g. .NET
Core). For these projects you should either add these files manually from the
content folder of the package or use the alternative methods described in the

Installation page.

Basic configuration

The NuGet package has added a configuration file (specsync.json) to your project that
contains all SpecSync related settings. Before the first synchronization we have to review and

change a few settings in this file.

1. Open the specsync.json filein Visual Studio from your project folder.
2. Set the value of the remote/projecturl setting to the project URL of your Azure DevOps
project. The project URL is usually in https://server-name/project-name Orin
http://server-name:8080/tfs/project-name form and it is not necessarily the URL of
the dashboard you open normally. See What is my Azure DevOps project URL for more

details.
3. Optionally you can set your personal access token (PAT) as user name (remote/user

setting) or choose one of the other Azure DevOps authentication options. If you don't
specify credentials here, SpecSync will show an interactive authentication prompt.

The specsync.json after basic configuration has been set

{

"$schema": "http://schemas.specsolutions.eu/specsync4azuredevops—config-1;

// See configuration options and samples at http://speclink.me/specsynccoi

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 2/10

https://specsolutions.gitbook.io/specsync/installation
https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=vsts
https://specsolutions.gitbook.io/specsync/important-concepts/what-is-my-tfs-project-url
https://specsolutions.gitbook.io/specsync/important-concepts/tfs-authentication-options

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

// You can also check the 'specsync-sample.json' file in the 'docs' folde

"remote": {
"projectUrl": "https://specsyncdemo.visualstudio.com/MyCalculator",

"user": "52yny ycsetda"

First synchronization

1. Make sure your project compiles.
2. We recommend starting from a state where
o all tests pass,
o the modified files are checked in to source control.
3. Open a command line prompt and navigate to the SpecFlow project folder (
MyCalculator.Specs)
4. Call specsync4azuredevops.cmd push toinvoke the synchronization.
5. If you haven't specified any credentials in the configuration file, an authentication dialog will
popup, where you have to specify your credentials for accessing the Azure DevOps project.

As a result, the scenarios from the project will be linked to newly created Azure DevOps test
cases, and you will see a result like this.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 3/10

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

Bl Developer Command Prompt for US 2007 [}

wnch specsync-basic-calcula
e push
nc for Azure DevOps VE,B.G
Copyright (c) Spec Solutions, 2815-2019

Free mode, limitations applied. Please check plans at http://speclink.me/specsync.

Connecting to Azure DevOps projec s://gasparn T o e S SePemo. . .
Done

/Calculator.Specs...

VAdditie feature. ..

Loaded 1 scenario definitions.
Synchronizing scenario definitions...

Loaded 2 scenario definitions.
Synchronizing scenario definitions...
Add two positive numbers =» link to new test case

link to new test case

W: \SpecSync\specsync-basic-calculator-specflow\MyCalculator.Specs?

Note: Scenarios are synchronized to normal, Scenario Outlines to parametrized test cases.

Useful hint for testing: Normally you cannot delete work items from Azure DevOps, so testing the
initial linking is harder. If you have Visual Studio installed, there is a tool called witadmin
available from the VS command prompt. With the destroywi command of this tool you can

delete work items. See witadmin help destroywi for details, and use it carefully.

Check Test Case in Azure DevOps

1. Find one of the created test case in Azure DevOps. The easiest way to do this is to open the
Azure DevOps URL in a browser and specify the test case ID (e.g. #12294) inthe "Search"

text box in the upper right corner of the web page.

You should see something like this.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 4/10

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

By TEST CASE 12284 Lo

12294 Scenario: Add two positive numbers

f‘ Gaspar Magy * ¥ 2 comments Save & Close & Follow @]
important X
State Design Area SpecSyncdTFS Demo
Reason & New teration SpecSyncdTFS Demo
Steps Summary = Associated Automation 0 & (i
Steps Development
Development hasn't started on this item.
1. Given | have entered the following numbers Related Work
number .
59 + in
13 There are no links in this group.
Status
2. When | choose add
Pricrity
3 Then the result should be 42 2

Automation status

Click or type here to add a step Mot Aut ted
ot Automate

There are a couple of things you can note here.

» The name of the scenario has been synchronized as the title of the test case. (The
"Scenario:" prefix can be omitted by changing the synchronization format configurations.)

e The tags of the scenario have been synchronized as test case tags.

» The steps of the scenario have been synchronized as test case steps. (The Then steps can
also be synchronized into the Expected result column of the test case step list and you can
change a couple of other formatting options as well.)

Verify feature file and commit changes

1. Open one of the feature files from the SpecFlow project in Visual Studio. SpecSync modified
the file and added a few tags.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 5/10

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation
2. Each scenario and scenario outline has been tagged witha @tc:... tag making the link

between the scenario and the created test case.

@tc:12294

@important
Scenario: Add two positive numbers

Note: The feature files are changed only when synchronizing new scenarios (linking). To avoid
file changes (e.g. when running the synchronization from a build server) the
--buildServerMode command line switch can be used. See Synchronizing test cases from

build for details.

Verify if the project still compiles and the tests pass (they should, since we have only added
tags), and commit (check-in) your changes.

Synchronize an update

Now let's make a change in one of the scenarios and synchronize the changes to the related test
case.

1. Update the title and the steps of the scenario, for example change the scenario

Add two positive numbers tO Multiply two positive numbers ,change add to

multiply inthe When step and update the expected resultto 377 :

@tc:12294
Scenario: Multiply two positive numbers
Given I have entered the following numbers
number |

29 |

13 |

I choose multiply

the result should be 377

2. Make sure it still compiles and the test passes.
3. Run the synchronization again:

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 6/10

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-test-cases-from-build

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

specsync4azuredevops.cmd push

The result shows that the test case for the scenario has been updated, but the other test cases

have remained unchanged (up-to-date).

cessing Fea
Loaded 1 scenario definitions.
Synchronizing scenario definitions...
Add two numbers => #122593
3 up-to-date.
ComplexAddition.feature...
. definitions.
synchronizing scenaric definitions...
Multiply two positive numbers =»> #12294
Test case #12294 updated.
Add two numbers (outline’) => #12295
Test case #12295 up-to-date.
Synchronizatio ompleted in 5.6s
3 scenaric definitions pr i, 3 synchronized

1. Refresh the test case in your browser to see the changed title and steps.

12294 Scenario: Multiply two positive numbers

£ Gaspar Nagy = 6 comments
X
State Design Area SpecSyncdTFS Demo
Reason MNew itaration SpecSyncdTFS Demo
Steps Summan Associated Autom
Steps Develop

+ Add lir
Developm:
Createam

1. Given | have entered the following numbers Related
number
20 + Add lir
1z There are t
N Status
= When | choase multiply
Then the result should be 377 2
Click or type here to add a step I:J t‘ A- t
ot Auta

Note: For executing complex test cases, further verification and planning steps might be required
after the test case has been changed. SpecSync can reset the test case state to a configured

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 7/10

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

value (e.g. Design)in order to ensure that these steps are not forgotten. For more information

on this, check the synchronization state configuration documentation.

Group synchronized test cases to a test suite

We have seen already how to synchronize scenarios to test cases. To be able to easily find these
test cases in Azure DevOps, they can be added to test suites. SpecSync can automatically
add/remove the synchronized test cases to a test suite. For this you have to specify the name or
the ID or the name of the test suite in the configuration.

1. Create a "Static suite" (e.g. "BDD Scenarios") in Azure DevOps. (For that you have to navigate
to "Test plans" and create and select a test plan first.)
2. Specify the name of the test suite inthe remote/testSuite/name entry of the

specsync.json file. (Alternatively you can specify the ID of the suite in

remote/testSuite/id . The suite names are not unique in Azure DevOps!)

"Sschema": "http://schemas.specsolutions.eu/specsync4azuredevops-conf

// See configuration options and samples at http://speclink.me/specsy
// You can also check the 'specsync-sample.json' file in the 'docs' fq

"remote": {
"projectUrl": "https://specsyncdemo.visualstudio.com/MyCalculator",
"user": "52yny4a ycsetda",
"testSuite": {
"name": "BDD Scenarios"

3. Make sure that the project compiles and the tests pass.
4. Run the synchronization again:

specsync4azuredevops.cmd push

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 8/10

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-state

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation

The synchronization will proceed with the result similar to this.

Connecting to Azure DewvOps project https

Processing Fﬂatures”nddltlﬂn feature
Loaded 1 scenario definitions

Synchronizing scenario definitions...

Add two numbers => #12293
Test case #12293 up-to-date.

Processing Features‘\Complexfddition.feature...

Loaded 2 scenario definitions.

Synchronizing scenario definitions...
Multiply two positive numbers =»> #12254

Test case #122594 up-to-date.

Add two numher DutllnEJ =>» #12295

Test case

Test suite #12297 deated.
Synchronization completed in
3 scenario definitions

8 o

Test Plans - [TestPlan1 ~

¥ I

MNew guery-based suite

Suitel

b 4 D

IC‘IH'Tl—l

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow

+ Mew -

<
+ - = & o
Tests
4 TestPland
- BDD Scenarios

® xc
® ac

t suite: BDD Scenarios (Suite [D; 12297

Lea

Add existing x O o >R

O
I

(.

D

12293 Scenario: Add two numbers

12254 Scenario: Multiply two posit

2295 Scenario Qutline: Add two n
9/10

7/27/2020 Getting started using SpecFlow - SpecSync for Azure DevOps Documentation
Note: Since the test suite names are not unique in Azure DevOps, you can also specify the test
suite ID in the remote/testSuite/id Setting.

Synchronizing automated test cases (optional)

So far the test cases we synchronized from the scenarios were marked as "Not Automated". This
means that although it is possible to execute the SpecFlow scenarios both locally and on the
build server (from the assembly built from the SpecFlow project), the synchronized tests cases
were not linked to the test method generated by SpecFlow.

If the team needs the Azure DevOps test cases for documentation and traceability and runs the
scenarios from assembly, then we have already reached the desired outcome. But if the test
cases have to be executed as automated test cases, we need to perform a few further steps and
you have to choose a test execution strategy.

For more information on test execution strategies and a step-by-step instruction on how they can
be configured, please check the Synchronizing automated test cases article.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow 10/10

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

Getting started using Cucumber or other
Gherkin-based BDD tool

This chapter goes through the setup and the synchronization steps for non-SpecFlow projects.
For SpecFlow projects, please check page Getting started using SpecFlow.

SpecSync can synchronize any scenarios that are written in Gherkin format. Gherkin format is
used by many tools in many platforms, like Cucumber, Cucumber JVM, Cucumber.js, Behat,
Behave and also SpecFlow.

If your scenarios are automated with a tool other than SpecFlow, SpecSync will synchronize
them as non-automated Azure DevOps Test Cases, because currently Azure DevOps only
supports specifying .NET automation for the test cases. The synchronized non-automated test
cases can be managed, linked and structured in Azure DevOps. You can also run them manually.

The SpecSync synchronization tool can be executed as a command line tool from Windows, OSX
and Linux-based systems. See Using SpecSync on OSX/Linux page for details.

In this guide we will use Cucumber.js as an example, but the steps can also be applied for other

tools as well.

Preparation

For setting up SpecSync for Azure DevOps, you need a Cucumber project and a Azure DevOps
project. For the supported Azure DevOps versions, please check the Compatibility list.

In our guide, we will use a calculator example (my_calculator) that uses Cucumber.js v5.1. The
sample project can be downloaded from GitHub.

For a synchronization target we use an Azure DevOps project:
https://specsyncdemo.visualstudio.com/MyCalculator . (An Azure DevOps project for

testing SpecSync can be created for free from the Azure DevOps website).

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 1/10

https://github.com/gasparnagy/specsync-basic-calculator-cucumber-js
https://specsolutions.gitbook.io/specsync/getting-started/getting-started-specflow
https://specsolutions.gitbook.io/specsync/important-concepts/using-specsync-on-osxlinux-page
https://specsolutions.gitbook.io/specsync/compatibility
https://azure.microsoft.com/en-us/services/devops/

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

Installation

Download SpecSync from the downloads page and unzip it to a folder on your system.

The package contains the synchronization command line tool (
tools/SpecSync4AzureDevOps.exe) and some documentation files (docs folder).

Basic configuration

Create a configuration file (specsync.json) to your project root, based on the
docs/specsync-empty.json file. The empty file can also be downloaded from

http://schemas.specsolutions.eu/specsync-empty.json.

"Sschema": "http://schemas.specsolutions.eu/specsync4azuredevops—-config-14

// See configuration options and samples at http://speclink.me/specsyncco
// You can also check the 'specsync-sample.json' file in the 'docs' folde

"remote": {
"projectUrl": "<specify your Azure DevOps project ULR>"

Before the first synchronization we have to review and change a few settings in this file. For this
example we will synchronize all feature files within the test/features folder. For

synchronizing only a specific set of feature files, please check the 1ocal Configuration

documentation.

1. Open the specsync.json file in your IDE (e.g. Visual Studio Code) from your project folder.
2. Set the value of the remote/projecturl setting to the project URL of your Azure DevOps
project. The project URL is usually in https://server-name/project-name Orin
http://server-name:8080/tfs/project-name form and it is not necessarily the URL of

the dashboard you open normally. See What is my Azure DevOps project URL for more
details.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 2/10

https://specsolutions.gitbook.io/specsync/downloads
http://schemas.specsolutions.eu/specsync-empty.json
https://specsolutions.gitbook.io/specsync/configuration/configuration-local
https://specsolutions.gitbook.io/specsync/important-concepts/what-is-my-tfs-project-url

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation
3. Optionally you can set your personal access token (PAT) as user name (remote/user
setting) or choose one of the other Azure DevOps authentication options. If you don't
specify credentials here, SpecSync will show an interactive authentication prompt.
4. Set the value of the 1local/featureFileSource/type settingto folder and the
local/featureFileSource/folder settingto test/features . This will instruct SpecSync

to process the feature files from that specific folder.

The “specsync.json’ after basic configuration has been set

"Sschema": "http://schemas.specsolutions.eu/specsync4azuredevops-config-14

// See configuration options and samples at http://speclink.me/specsyncco
// You can also check the 'specsync-sample.json' file in the 'docs' folde

"remote": {
"projectUrl": "https://specsyncdemo.visualstudio.com/MyCalculator",
"user": ycsetda"

First synchronization

1. Make sure your project runs.
2. We recommend starting from a state where
o all tests pass,
o the modified files are checked in to source control.
3. Open a command line prompt and navigate to the project root folder
4. Call path-to-specsync-package/SpecSync4AzureDevOps.exe push to invoke the
synchronization. See Using SpecSync on OSX/Linux page for more details on how to invoke
the synchronization tool on different platforms.
5. If you haven't specified any credentials in the configuration file, an authentication dialog will
popup, where you have to specify your credentials for accessing the Azure DevOps project.

As a result, the scenarios from the project will be linked to newly created Azure DevOps test
cases, and you will see a result like this.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 3/10

https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=vsts
https://specsolutions.gitbook.io/specsync/important-concepts/using-specsync-on-osxlinux-page
https://specsolutions.gitbook.io/specsync/important-concepts/tfs-authentication-options

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation
. Bl Developer Command Prompt for US 2007 [} i
sync-basic-calculator-cucumber-js>»%SPECSYNC_DIR%\SpecSyncdAzureDavOps.exe push
ync for re DevOps v2.0.8
Copyright (c) Spec Solutions, 2815-2819

Free mode, limitations applied. Please check plans at http:/, clink.me/specsync.

Processing test\features‘\Addition.feature...
Loaded 1 scenaric definitions.
Synchronizing scenario definitions...
Add two number :
Linked tc £
Processing test\featur omplexAddition. feature...
Loaded 2 scenaric definitions.
Synchronizing scenario definitions...
Add two positive n link to new test case

link to new test case

Note: Scenarios are synchronized to normal, Scenario Outlines to parametrized test cases.

Useful hint for testing: Normally you cannot delete work items from Azure DevOps, so testing the
initial linking is harder. If you have Visual Studio installed, there is a tool called witadmin
available from the VS command prompt. With the destroywi command of this tool you can

delete work items. See witadmin help destroywi for details, and use it carefully.

Check Test Case in Azure DevOps

1. Find one of the created test case in Azure DevOps. The easiest way to do this is to open the
Azure DevOps URL in a browser and specify the test case ID (e.g. #12302) inthe "Search"

text box in the upper right corner of the web page.

You should see something like this.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 4/10

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

——— FY
B TEST CASE 12294 I

12294 Scenario: Add two positive numbers

£ Gaspar Nagy * ¥ 2 comments 8 Follow)]
important X
State Design Area SpecSyncdTFS Demo
Reason & New teration SpecSyncdTFS Demo
Steps Summary = Associated Automation 0 & (i
Steps Development
Development hasn't started on this item.
1. Given | have entered the following numbers Related Work
number .
59 + in
13 There are no links in this group.
Status
2. When | choose add
Pricrity
3 Then the result should be 42 2

AUTmation s1atus

Click or type here to add a step Not A t ted
ot Automate

There are a couple of things you can note here.

» The name of the scenario has been synchronized as the title of the test case. (The
"Scenario:" prefix can be omitted by changing the synchronization format configurations.)

e The tags of the scenario have been synchronized as test case tags.

» The steps of the scenario have been synchronized as test case steps. (The Then steps can
also be synchronized into the Expected result column of the test case step list and you can
change a couple of other formatting options as well.)

Verify feature file and commit changes

1. Open one of the feature files from in the IDE. SpecSync modified the file and added a few
tags.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 5/10

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation
2. Each scenario and scenario outline has been tagged witha @tc:... tag making the link

between the scenario and the created test case.

@tc:12302

@important
Scenario: Add two positive numbers

Note: The feature files are changed only when synchronizing new scenarios (linking). To avoid
file changes (e.g. when running the synchronization from a build server) the
--buildServerMode command line switch can be used. See Synchronizing test cases from

build for details.

Verify if the project still compiles and the tests pass (they should, since we have only added
tags), and commit (check-in) your changes.

Synchronize an update

Now let's make a change in one of the scenarios and synchronize the changes to the related test
case.

1. Update the title and the steps of the scenario, for example change the scenario

Add two positive numbers tO Multiply two positive numbers ,change add to

multiply inthe When step and update the expected resultto 377 :

@tc:12302
Scenario: Multiply two positive numbers
Given I have entered the following numbers
number |

29 |

13 |

I choose multiply

the result should be 377

2. Make sure it still compiles and the test passes.
3. Run the synchronization again:

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 6/10

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-test-cases-from-build

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

path-to-specsync-package/SpecSync4AzureDevOps.exe push

The result shows that the test case for the scenario has been updated, but the other test cases

have remained unchanged (up-to-date).

ecting to Azure DevOps
Loading feature files from W:'
Loaded 2 feature files ;
Processing test\features\Addition.feature...
Loaded 1 scenario definitions.
Synchronizing scenario definitions...
Add two numbers => #12381
Test case #12381 up-to-date.

FProcessing test\features‘\ComplexAddition.feature...
Loaded 2 scenario definitions.
Synchronizing scenario definitions...
lve numbers =» #12

e updated.
Add two numbers (outline) =» #12383
Test case #12303 up-to-date.
ization completed in S
o definitions p

1. Refresh the test case in your browser to see the changed title and steps.

B TEST CASE 12284
12294 Scenario: Multiply two positive numbers
£ Gaspar Nagy (¥ & comments

t X

Design Area SpecSyncdTFS Demo
Reason New teration SpecSyncdTFS Demo

Steps Summar Associated Autom

Steps Develof
@ o@m ow 1t L X @ @ B o y A
Developm:
1. Given | have entered the following numbers Related
number i
9 + Add lir
13 There are t
Status
2 When | choose multiply
Then the result should be 377 2
Click or type here to add a step Illotw Ail‘tl‘]

Note: For executing complex test cases, further verification and planning steps might be required
after the test case has been changed. SpecSync can reset the test case state to a configured
value (e.g. Design) in order to ensure that these steps are not forgotten. For more information

on this, check the synchronization state configuration documentation.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 7/10

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-state

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

Group synchronized test cases to a test suite

We have seen already how to synchronize scenarios to test cases. To be able to easily find these
test cases in Azure DevOps, they can be added to test suites. SpecSync can automatically
add/remove the synchronized test cases to a test suite. For this you have to specify the name or
the ID or the name of the test suite in the configuration.

1. Create a "Static suite" (e.g. "BDD Scenarios") in Azure DevOps. (For that you have to navigate
to "Test plans" and create and select a test plan first.)
2. Specify the name of the test suite inthe remote/testSuite/name entry of the

specsync.json file. (Alternatively you can specify the ID of the suite in

remote/testSuite/id . The suite names are not unique in Azure DevOps!)

"Sschema": "http://schemas.specsolutions.eu/specsync4azuredevops-conf

// See configuration options and samples at http://speclink.me/specsy
// You can also check the 'specsync-sample.json' file in the 'docs' fq

"remote": {
"projectUrl": "https://specsyncdemo.visualstudio.com/MyCalculator",
"user": "52yny4a ycsetda",
"testSuite": {
"name": "BDD Scenarios"

3. Make sure that the project compiles and the tests pass.
4. Run the synchronization again:

path-to-specsync-package/SpecSync4AzureDevOps.exe push

The synchronization will proceed with the result similar to this.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 8/10

7/27/2020

Loading feature files from
ded 2 feature fil
Calculator. s.Cspr
Processing Features\Addition.feature...
Loaded 1 scenarioc definitions.
Synchronizing scenario definitio
Add two numbers =3 #12293
Test case #12293 up-to-date.
Processing Features‘\ComplexAddition.feature
Loaded 2 scenaric definitions.

Synchronizing scenario definitic

Multiply two positive numbers
Test case #122594 up-to-date.

up-to-date.
suite...

Q:J Test Plans Tezt Plans Search

b 4 D

@

Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

(3

a Test Plans > [TestPlan1 ~
[
Test suite: BDD Scenarios (Suite |D: 12297
+ - = H &
Tests Charts Dutc
ﬂ 4 TestPlan
- BDD Scenarics + Mew - Add existing b d (i) o |
W MNew guery-based suite e . - .
Suite2 .)
@ sctive 1 12293 Scenario: Add two numbers
® ictive 2 12294 Scenario: Multiply two posit
® sctive 3 2295 Scenario Qutline: Add two n

Note: Since the test suite names are not unique in Azure DevOps, you can also specify the test

suite ID in the remote/testSuite/id setting.

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber

9/10

7/27/2020 Getting started using Cucumber or other Gherkin-based BDD tool - SpecSync for Azure DevOps Documentation

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber 10/10

7/27/2020 Installation - SpecSync for Azure DevOps Documentation

Installation

For a detailed installation instructions, please check the Getting started guide.

For .NET (SpecFlow) projects

For .NET (SpecFlow) projects, SpecSync can be installed via NuGet. The synchronization tool
can be installed by adding the SpecSync.AzureDevops package from NuGet.org.

PM> Install-Package SpecSync.AzureDevOps

For synchronizing automated test cases using the "Test Suite based execution” strategy with

MsTest and NUnit, an SpecFlow plugin has to be installed additionally. The name of the package

depends on the SpecFlow version you use, e.g. for SpecFlow v2.3 the
SpecSync.AzureDevOps.SpecFlow.2-3 package has to be used. See more details in

Synchronizing automated test cases.

Notes for installing SpecSync to SDK-Style .NET Projects (e.g. .NET Core)

The specSync.AzureDevOps NuGet package contains the synchronization tool, but it also

contains some supporting files to get started with SpecSync easier. Unfortunately when using
NuGet for SDK-Style .NET Projects (e.g. .NET Core), the NuGet infrastructure does not allow
including editable content files in the target project, so these helper files are not added to the
project by default. You can add these files manually from the project from the content folder

of the NuGet package.

e specsync.json - thisis a default configuration file. Alternatively you can also create a new
JSON file based on the the samples shown in the Configuration page of the documentation.

» specsync4azuredevops.cmd - this file makes it easier to execute the synchronization tool.
Alternatively you can also invoke the SpecSync4AzureDevOps.exe directly from the NuGet

packages folder. (See more details in the Usage page.)

https://specsolutions.gitbook.io/specsync/installation 1/4

https://specsolutions.gitbook.io/specsync/getting-started
https://specsolutions.gitbook.io/specsync/configuration
https://www.nuget.org/packages/SpecSync.AzureDevOps
https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases
https://www.nuget.org/packages/SpecSync.AzureDevOps.SpecFlow.2-3
https://specsolutions.gitbook.io/specsync/usage
https://www.nuget.org/packages/SpecSync.AzureDevOps

7/27/2020 Installation - SpecSync for Azure DevOps Documentation

For any platforms (e.g. for Cucumber)

SpecSync can be downloaded as a ZIP file, the file contains the synchronization tool inside the
tools folder. The download links can be found on the Downloads page.

Prerequisites for running the synchronization tool.

e On Windows systems: .NET framework 4.5 or later
e On OSX/Linux: Mono

If you need to use SpecSync but cannot ensure the prerequisites, please contact support
(specsync@specsolutions.eu).

Install SpecSync as .NET Core tool

@ This install method is available for machines with .NET Core SDK 2.1 installed
regardless of the .NET version of the project that is going to be synchronized. If this
cannot be ensured, you can use the the SpecSync.AzureDevOps.Console NuGet
package or download one of the pre-compiled binaries.

@ Installing SpecSync as a .NET Core tool is available from SpecSync v2.2 or later
(including v2.2 pre-releases).

The most convenient way to use SpecSync is to install it as a local .NET Core tool. This way you
can use different SpecSync versions for different projects and the required SpecSync version is
registered in the project repository. You can read more about .NET Core local tools on Microsoft
Docs.

.NET Core local tools are only supported with .NET Core SDK 3.0 or later. In case you only have
.NET Core 2.1 SDK installed, you can install SpecSync as a global tool or use the
SpecSync.AzureDevOps.Console NuGet package.

Step 1 - Initialize .NET Core local tool configuration (if needed)

https://specsolutions.gitbook.io/specsync/installation 2/4

https://specsolutions.gitbook.io/specsync/downloads
https://specsolutions.gitbook.io/specsync/downloads
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-local-tool
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-global-tool
https://www.nuget.org/packages/SpecSync.AzureDevOps.Console
https://www.nuget.org/packages/SpecSync.AzureDevOps.Console

7/27/2020 Installation - SpecSync for Azure DevOps Documentation
If you haven't used any .NET Core local tool in your project, you need to create the necessary
configuration file. Otherwise this step can be skipped.

For initializing the configuration files, you need to run the dotnet new tool-manifest

command from the solution or repository root directory.

dotnet new tool-manifest

This command creates a manifest file named dotnet-tools.json underthe .config

directory.

Step 2 - Install SpecSync as a .NET Core local tool

Once the .NET local tool configuration is initialized SpecSync can be easily installed using the
dotnet tool install command.

dotnet tool dinstall SpecSync.AzureDevOps —--version 2.2.0-pre20200414

@ The --version setting is only required until the .NET Core tool support is only
available as pre-release. It is recommended to specify the latest pre-release version
listed on NuGet.org.

Step 3 - Verify installation

SpecSync is ready to run using the dotnet specsync command. You can test the installation by

checking the installed SpecSync version.

dotnet specsync version

Step 4 - Restore SpecSync for other developers working with your project

https://specsolutions.gitbook.io/specsync/installation 3/4

https://www.nuget.org/packages/SpecSync.AzureDevOps

7/27/2020 Installation - SpecSync for Azure DevOps Documentation
To be able to use the .NET Core local tools you have installed by other developers of the same
project, they need to "restore" the installed tools. This can be performed using the
dotnet tool restore command,that restores all .NET Core local tools of the project. See

more information about this command on Microsoft Docs.

dotnet tool restore

https://specsolutions.gitbook.io/specsync/installation

4/4

https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-local-tool

7/27/2020 Usage - SpecSync for Azure DevOps Documentation

Usage

The SpecSync install package contains a command line tool (SpecSync4AzureDevOps.exe)

inside the tools folder. All synchronization operations can be performed by invoking this tool

from the local environment or from the CI build process. (For .NET projects, the package adds a
specsync4azuredevops.cmd script file to the project for calling the SpecSync command line

tool conveniently.)

The synchronization tool provides different commands. For synchronizing the scenarios to Azure
DevOps, the push command can be used. The configuration options have to be provided in a

json configuration file, called specsync.json by default. It is recommended to invoke the

command line tool from the project folder, otherwise the path of the configuration file has to be
specified explicitly.

path-to-specsync-package\tools\SpecSync4AzureDevOps.exe push

For a detailed setup instructions, please check the Getting started guide. For a complete list of
configuration options check the Configuration documentation.

Note: SpecSync collects anonymous error diagnostics and statistics. Neither user nor machine
names, nor Azure DevOps URLs, nor test case & test suite names nor IDs are collected! This can
be disabled with the --disableStats parameter.

Available SpecSync commands

e push - Pushes changes of the scenarios on the local repository to the Azure DevOps
server. This by default includes linking of new scenarios to new test cases (link) and
updating test cases of linked scenarios (update).

e pull - Pulls changes from Azure DevOps server to the local repository. This by default
includes creation of new scenarios from unlinked test cases (create) and changing
scenarios of linked test cases (change). See Two-way synchronization for details.

https://specsolutions.gitbook.io/specsync/usage 1/4

7/27/2020 Usage - SpecSync for Azure DevOps Documentation
e publish-test-results - Publish local test results to Azure DevOps server. See more

details about the command in the "Assembly based execution strategy" section of the
Synchronizing automated test cases article.

e help - Displays more information on a specific command.

e version - Displays version information.

Common command line options

The following command line options are available for all synchronization commands.

e [config-file-path] - The path of the SpecSync configuration file, absolute path or
relative to the current folder, e.g. MyProject.Specs\specsync.json . (Default: use
specsync.json from the current folder)
* —-user [user-name] - The Azure DevOps user name or personal access token (PAT).
Overrides remote/user setting of the configuration file. See Azure DevOps authentication

options for details. (Default: [use from config file or interactive prompt])

e -—-password - The password for the Azure DevOps user. Overrides remote/password
setting of the configuration file. See Azure DevOps authentication options for details.
(Default: [use from config file or interactive prompt])

e —-buildServerMode - If specified, only those changes will be performed that do not need

any change in the local feature file. Linking new scenarios or pulling changes from Azure
DevOps are skipped. Overrides synchronization/enableLocalChanges setting of the

configuration file. See Synchronizing test cases from build for details. (Default: false)
e -—-tagFilter - Atag expression of scenarios that should be included in the current

synchronization (e.g. @current_sprint and @done). See Filters and scopes for details.

(Default: [not filtered by tags])
e —-force - If specified, SpecSync update test cases even if there is no local change and

the test case was not modified remotely. (Default: false)
e -—-license --The path to the license file; can be relative to the project folder. Overrides
toolSettings/licensePath setting of the configuration file. See Licensing for details.
(Default: [use from config file or specsync.lic |)
e —-baseFolder - The base folder where SpecSync searches for project, feature and license

files by default. (Default: [folder of the configuration file])
e -—-disableStats - If specified, SpecSync will not collect anonymous error diagnostics and

statistics. Overrides toolSettings/disableStats setting of the configuration file. (Default:

false)

https://specsolutions.gitbook.io/specsync/usage 2/4

7/27/2020 Usage - SpecSync for Azure DevOps Documentation
e -v, --verbose --If specified, error messages and trace information will be displayed
more in detail. Overrides toolSettings/outputLevel setting of the configuration file.

(Default: false)

Synchronization command line options (for push and pull)

All common command line options can be used and in addition to that the following options can

be specified for push and pull commands.

e —-buildServerMode - If specified, only those changes will be performed that do not need

any change in the local feature file. Linking new scenarios or pulling changes from Azure
DevOps are skipped. Overrides synchronization/enableLocalChanges setting of the

configuration file. See Synchronizing test cases from build for details. (Default: false)
e -—-tagFilter - Atag expression of scenarios that should be included in the current

synchronization (e.g. @current_sprint and @done). See Filters and scopes for details.

(Default: [not filtered by tags])
e -—force - If specified, SpecSync update test cases even if there is no local change and

the test case was not modified remotely. (Default: false)

Publish test results command line options (for publish-test-
results)

All common command line options can be used and in addition to that the following options can
be specified for publish-test-results command.

See more details about the command in the "Assembly based execution strategy" section of the
Synchronizing automated test cases article.

e ——testConfiguration -- The Azure DevOps test configuration name or ID to publish the
results for. For specifying an ID, use #1234 format. (Default: [use from config file])
e -—-testResultFile - The file path of the TRX test result file to publish. (Default: [use from

config file])

https://specsolutions.gitbook.io/specsync/usage 3/4

7/27/2020 Usage - SpecSync for Azure DevOps Documentation

Examples

Synchronize local changes to Azure DevOps (specsync.json config file is in the current folder):

path-to-specsync-package\tools\SpecSync4AzureDevOps.exe push

Get help about command line options for push command:

path-to-specsync-package\tools\SpecSync4AzureDevOps.exe help push

Synchronize local changes to Azure DevOps with custom config file:

path-to-specsync-package\tools\SpecSync4AzureDevOps.exe push MyProject.Specs\

Synchronize local changes to Azure DevOps on build server:

path-to-specsync-package\tools\SpecSync4AzureDevOps.exe push —-buildServerMod

https://specsolutions.gitbook.io/specsync/usage 4/4

7/27/2020 Configuration - SpecSync for Azure DevOps Documentation

Configuration

This section contains a detailed reference of the SpecSync configuration options.

For a detailed setup instructions, please check the Getting started guide. For a complete list of
command line options of the synchronization tool check the Usage documentation.

The specsync.json configuration file.

SpecSync can be configured using a json configuration file, by default called specsync.json .

This file contains all information required to perform the different synchronization tasks. Some
settings of the configuration file can be also overridden from the command line options of the
synchronization tool, these are listed in the Usage guide.

The specsync.json configuration file is a standard JSON file, but it also allows // style

comments. There is a JSON schema available for the configuration file that contains the
available configuration options and a short description.

Open the SpecSync config files in Visual Studio (or other editor that supports JSON schema,

like Visual Studio Code) to get auto-completion for editing and documentation hints if you
hover your mouse over a setting.

https://specsolutions.gitbook.io/specsync/configuration 1/3

https://specsolutions.gitbook.io/specsync/getting-started
https://specsolutions.gitbook.io/specsync/usage
https://specsolutions.gitbook.io/specsync/usage

7/27/2020 Configuration - SpecSync for Azure DevOps Documentation

Addition.feature Complexfddition.feature Output -

Schema: http://schemas.specsolutions.eu/specsyncdazuredevops-config-latest,json -
1 B1{ ks
2 "$zchema”: "httu:ffschemas.suecscluticns.Eu,f’suecs~fnc4a:u’Edevcus—ccnfig—latesft (1}
3 N 8
4 B // 5ee configuration options and samples at http://speclink.me/specsyncconfig.

5 // You can also check the 'specsync-sample.json' file in the 'docs' folder of: 1
6 :
7 H' "remote": {
8 "projectUrl™: “https://gaspmsmee == i : T EEDemo” , 0
g ,.|,. .
18 E user Haleledl The TFS user name or Personal Access Token to be used for authentication (se
11 password smng-[interactive prompt])
- 1 3
13 1,
15§H . "synchronization": {
16 "automation": {
17 "enabled": true
18 }
19 }
2ef [}
21
Examples

The following example shows a minimal configuration file.

"Sschema": "http://schemas.specsolutions.eu/specsync4azuredevops-config-14

"remote": {
"projectUrl": "https://specsyncdemo.visualstudio.com/MyCalculator",

A detailed sample configuration file that contains nearly all settings can be found at
http://schemas.specsolutions.eu/specsync-sample.json.

Configuration sections

https://specsolutions.gitbook.io/specsync/configuration 2/3

http://schemas.specsolutions.eu/specsync-sample.json

7/27/2020 Configuration - SpecSync for Azure DevOps Documentation
The settings in the configuration file are grouped into different configuration sections. Each
configuration section is a JSON object following the syntax:

{ // start of the file

"sectionl": {
// settings for section 'sectionl'

s

} // end of the file

Note: The leading comma (,) after the curly brace close (}) of sectionl is not needed if

this is the last section in the file.

Available configuration sections

The following configuration sections can be used. Click to the name of the section for detailed
documentation.

e toolSettings - settings for the synchronization tool

e local --settings for the local repository (file system) containing the feature files

* remote - Settings for accessing the test cases on the remote Azure DevOps server
* synchronization --synchronization settings

e specFlow --settings related to synchronizing SpecFlow projects

* customizations --configure customizations

https://specsolutions.gitbook.io/specsync/configuration 3/3

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/configuration/configuration-remote
https://specsolutions.gitbook.io/specsync/configuration/configuration-specflow
https://specsolutions.gitbook.io/specsync/configuration/configuration-local
https://specsolutions.gitbook.io/specsync/configuration/configuration-customizations
https://specsolutions.gitbook.io/specsync/configuration/configuration-toolsettings

7/27/2020 toolSettings - SpecSync for Azure DevOps Documentation

toolSettings

This configuration section contains settings for the synchronization tool.

The following example shows the available options within this section.

"toolSettings": {
"licensePath": "specsync.lic",

"disableStats": false,
"outputLevel": "normal"

I

Settings

* TlicensePath - Path for the license file. Can contain an absolute or a relative path to the
config file folder. It may contain environment variables in ...%MYENV%... form. Can be
overridden by the --license command line option. See Licensing for details. (Default:

specsync.lic)

e disableStats - If setto true, SpecSync will not collect anonymous error diagnostics and
statistics. Can be overridden by the --disableStats command line option. (Default:

false)

* outputLevel - Setthe detail level of error messages and trace information displayed by
the tool. Available options: normal , verbose and debug . Can be overridden by the

--verbose command line option. (Default: normal)

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-toolsettings

m

https://specsolutions.gitbook.io/specsync/usage
https://specsolutions.gitbook.io/specsync/configuration
https://specsolutions.gitbook.io/specsync/usage
https://specsolutions.gitbook.io/specsync/licensing
https://specsolutions.gitbook.io/specsync/usage

7/27/2020 local - SpecSync for Azure DevOps Documentation

local

This configuration section contains settings for the local repository (file system) containing the

feature files.

The following example shows the available options within this section.

"local": {
"featureFileSource": {
"type": "projectFile",
"filePath": "MyProject.Specs\\MyProject.Specs.csproj"

s

"tags": "@done and not (@ignored or @planned)",

"defaultFeatureLanguage'": "en-US"

s

Settings

e featureFileSource - The feature file source configuration. (Default: [Detect project file in

the folder of the configuration file])
o featureFileSource/type -- The type of the feature file source configuration. Available

opﬂons: projectFile , folder , listFile and stdIn .

* projectFile --Loads feature file list from a .NET C# project file (.csproj).
SpecSync detects the project file by extension in the folder of the configuration file
by default, but the project file path can also be specified in the

local/featureFileSource/filePath setting.

» folder --Loads the feature files from a particular folder and its sub-folders. The
folder can be specified in the featureFileSource/folder setting.

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 1/6

7/27/2020 local - SpecSync for Azure DevOps Documentation

* 1istFile - Loads the feature file list from a text file. Each line of the text file
should contain the path of a feature file. Empty lines and lines start with # are
ignored. The feature file path can be absolute or a relative path to the config file
folder. See example below and Getting started using Cucumber for more details.

*» stdIn - Loads the feature file list from the standard input stream. The content of
the input stream are handled in the same was as the 1listFile option. See
example below and Getting started using Cucumber for more details.

o featureFileSource/filePath -- The path of the feature file source file. Can contain
an absolute or a relative path to the config file folder. It may contain environment
variablesin ...%MYENV%... form.

o featureFileSource/folder -- The folder to search the feature files in when type
was setto folder . Can contain an absolute or a relative path to the config file folder.
It may contain environment variables in ...%MYENV%... form. (Default: [load feature
files from the folder of the config file])

* tags - Atagexpression of scenarios that should be included in synchronization (e.g.
not @ignore Or @done and not (@ignored or @planned)).Seefﬁheﬁ;andscopesfor
details. (Default: [all scenarios included))
* defaultFeaturelLanguage -- The default feature file language, e.g. de-AT . (Default: [get

from SpecFlow config or use en-us J)

Example: Synchronize feature files of a SpecFlow project

The SpecFlow project can be detected in the folder of the configuration file usually, in this case
no additional configuration is required. (SpecSync tries to find a .csproj file in the folder.) In
case there are multiple .NET project in the folder or the configuration file is not stored in the

project root, you should configure SpecSync as below:

"local": {
"featureFileSource": {
"type": "projectFile",

"filePath": "MyProject\\MyProjectFile.csproj"
}

b

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 2/6

https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber
https://specsolutions.gitbook.io/specsync/important-concepts/filters-and-scopes
http://speclink.me/tagexpressions
https://specsolutions.gitbook.io/specsync/getting-started/getting-started-cucumber

7/27/2020 local - SpecSync for Azure DevOps Documentation

Example: Synchronize feature files from the features folder

For Cucumber-based projects, it is common to store the feature files in a folder called
features . In order to synchronize the feature files with this setup, the feature file source has to

be configured to folder and the required folder path has to be specified in the folder

setting:

"local": {
"featureFileSource": {
"type": "folder",

"folder": "features"

You can invoke the syncronization as usual:

path-to-specsync-package/tools/SpecSync4AzureDevOps.exe push

Example: Synchronize feature files from a sub-folder

Let's imagine a folder structure as the following:

features/
features/feature_a.feature
features/group_a/feature_b.feature

features/group_a/feature_c.feature
features/group_a/area_1/feature_d.feature
features/group_b/feature_e.feature

In this example SpecSync is configured to synchronize all feature files within

features/group_a (SC)CLWFenﬂy feature_b.feature , feature_c.feature ,

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 3/6

7/27/2020 local - SpecSync for Azure DevOps Documentation

feature_d. feature), but without listing them explicitly in a file.

For this, the feature file source has to be configured to folder and the required folder path has

to be specified in the folder setting:

"local": {
"featureFileSource": {
"type": "folder",

"folder": "features/group_a"
}
I

You can invoke the syncronization as usual:

path-to-specsync-package/tools/SpecSync4AzureDevOps.exe push

Example: Synchronize specific feature files

The following example synchronizes a specific set of feature files.

We need a text file with the list of feature files to be synchronized, let's call it
specsync-features.txt . Save it in the project root folder, where the specsync.json

configuration file is located.

features/addition. feature
features/special/complex_addition.feature

this line is dgnored
features/multiplication. feature

All paths in this file can be relative to the folder of the config file. On Windows platform the \
character has to be used instead of the / .

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 4/6

7/27/2020 local - SpecSync for Azure DevOps Documentation

The list file has to be specified in the config file:

"local": {
"featureFileSource": {
"type'": "listFile",

"filePath": "specsync-features.txt"

You can invoke the syncronization as usual:

path-to-specsync-package/tools/SpecSync4AzureDevOps.exe push

Example: Synchronize feature files from a dynamic folder list

In this example we will synchronize the same feature files as in the previous example (all feature
files within features/group_a), but now the list of feature file is provided by an external tool

and SpecSync will receive it through through the standard input stream with piping.

First, let's set the config file to:

"local": {
"featureFileSource": {
"type": "stdIn"

}
¥,

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 5/6

7/27/2020 local - SpecSync for Azure DevOps Documentation
After that we can generate the file list and invoke the synchronization. Let's suppose the current

folder is the project root.

On Windows (CMD):

dir /s /b features\group_a\x.feature | path-to-specsync-package\tools\SpecSyn

On Windows (PowerShell):

gci —-Path .\features\group_a -r x.Feature | % FullName | path-to-specsync-pac

On OSX and Linux:

find features/group_a/ -name x.feature | path-to-specsync-package/tools/SpecS

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-local 6/6

https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 remote - SpecSync for Azure DevOps Documentation

remote

This configuration section contains settings for accessing the test cases on the remote Azure
DevOps server.

The following example shows the available options within this section.

"remote": {
"projectUrl": "https://dev.azure.com/myorganization/MyProject",

"user": "myuser",
"password": "%MYPWD%",
"testSuite": {

"name": "BDD Scenarios"

Settings

e projecturl - The full URL of the Azure DevOps or VSTS project (including project
collection name if necessary). Must not include project team name: for multi-team projects
the root project URL has to be specified. See What is my Azure DevOps project URL for
details. (Mandatory.)

e user - The Azure DevOps user name or personal access token (PAT) to be used for

authentication. It may contain environment variables in ...%MYENV%... form. See Azure

DevOps authentication options for details. (Default: finteractive prompt))
e password -- The password to be used for authentication. It may contain environment

variablesin ...%MYENV%... form. See Azure DevOps authentication options for details.

(Default: finteractive prompt))
* testSuite - Specifies a test suite within the Azure DevOps project as a target container of

the synchronized test cases. If the test suite is specified, SpecSync will add the

https://specsolutions.gitbook.io/specsync/configuration/configuration-remote 1/2

https://specsolutions.gitbook.io/specsync/important-concepts/tfs-authentication-options
https://specsolutions.gitbook.io/specsync/important-concepts/what-is-my-tfs-project-url
https://specsolutions.gitbook.io/specsync/important-concepts/tfs-authentication-options
https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=vsts

7/27/2020 remote - SpecSync for Azure DevOps Documentation
synchronized test cases to it for push command and consider the test cases within the
suite for pull command. See Group synchronized test cases to a test suite for details.
(Default: [test cases are not included to a test suite))
o testSuite/name - The name of the test suite. For suites with non-unique names,
please use the testSuite/id setting.

o testSuite/id - "The ID of the test suite as a number (e.g. id: 12345)."

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-remote

212

https://specsolutions.gitbook.io/specsync/important-concepts/group-synchronized-test-cases-to-a-test-suite
https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 synchronization - SpecSync for Azure DevOps Documentation

synchronization

This configuration section contains synchronization settings.

The following example shows the available options within this section.

"synchronization": {
"enableLocalChanges": true,
"forceUpdate": true,
"testCaseTagPrefix": "tc",

"pull": {
"enabled": true,
"enableCreatingScenariosForNewTestCases": false

s

"automation": {
"enabled": true,
"skipForTags": "@manual"

s

"state": {
"setValueOnChangeTo": '"Design"

s

"areaPath": {
"mode": "setOnLink",
"value": "\\MyArea"
¥,
"jterationPath": {
"mode": "setOnLink",
"value": "\\Iterationl"
b
"links": [
{
"targetWorkItemType": "ProductBacklogItem",
"tagPrefix": "pbi",
"relationship": "Child",
"mode": '"createIfMissing"

"tagPrefix": "bug"

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization

7/27/2020 synchronization - SpecSync for Azure DevOps Documentation

1,

"format": {
"useExpectedResult": false,
"syncDataTableAsText": false,
"prefixBackgroundSteps": true,

"prefixTitle": true
+
}s

Settings

e enablelLocalChanges - Enables changing feature files in the local repository. If set to false
(called build server mode), only those changes will be performed that do not need any
change in the local feature files. Linking new scenarios or pulling changes from test cases
will be skipped. Can be overridden by the --buildServerMode command line option. See
Synchronizing test cases from build for details. (Default: true)

e forceUpdate --If setto true, SpecSync update test cases even if there is no local change
and the test case was not modified remotely. Can be overridden by the --force command
line option. (Default: false)

* testCaseTagPrefix - The tag prefix for specifying the test cases. E.g. specify testcase

for referring to test cases using a tag, like @testcase:1234 . (Default: tc)

Sub-sections

The following configuration sub-sections can be used. Click to the name of the section for
detailed documentation.

pull -- Settings to configure the pull behavior. See Two-way synchronization for details.
e automation -- Settings to configure synchronizing automated test cases. See

Synchronizing automated test cases for details.

state -- Settings to configure how the test case state field should be updated.
e areaPath --Settings to configure how the test case area path field should be updated. See

Add new test cases to an Area or an lteration for details.

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization 2/3

https://specsolutions.gitbook.io/specsync/usage
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-automation
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-areapath
https://specsolutions.gitbook.io/specsync/important-concepts/two-way-synchronization
https://specsolutions.gitbook.io/specsync/important-concepts/add-new-test-cases-to-an-area-or-an-iteration
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-pull
https://specsolutions.gitbook.io/specsync/usage
https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-test-cases-from-build
https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-state

7/27/2020 synchronization - SpecSync for Azure DevOps Documentation
e jterationPath --Settings to configure how the test case iteration path field should be

updated. See Add new test cases to an Area or an Iteration for details.

e links - Settings to configure how test case links should be updated based on the tags of
the scenario. See Linking work items using tags for details.

e format - Settings to configure the format of the synchronized test case. See Configuring

the format of the synchronized test cases for details.

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization

3/3

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-iterationpath
https://specsolutions.gitbook.io/specsync/important-concepts/linking-work-items-with-tags
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-links
https://specsolutions.gitbook.io/specsync/important-concepts/add-new-test-cases-to-an-area-or-an-iteration
https://specsolutions.gitbook.io/specsync/configuration
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format
https://specsolutions.gitbook.io/specsync/important-concepts/configuring-the-format-of-the-synchronized-test-cases

7/27/2020 pull - SpecSync for Azure DevOps Documentation

pull

This configuration section contains settings to configure the pull behavior.
Read more about the pull behavior in the Two-way synchronization concept description.
Note: The two-way synchronization is an Enterprise feature.

The following example shows the available options within this sub-section.

"synchronization": {

"pull": {
"enabled": true,
"enableCreatingScenariosForNewTestCases": false

3,

I

Settings

* enabled - Enables changing the scenarios in the local repository based on the remote test
cases. (Default: false)
* enableCreatingScenariosForNewTestCases -- Enables creating new scenarios from test

cases that are not linked to any scenarios yet. (Default: false)
[Back to the synchronization Configuration]

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-pull 1/2

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/important-concepts/two-way-synchronization
https://specsolutions.gitbook.io/specsync/licensing
https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 pull - SpecSync for Azure DevOps Documentation

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-pull 2/2

7/27/2020 automation - SpecSync for Azure DevOps Documentation

automation

This configuration section contains settings to configure synchronizing automated test cases.

Read more about synchronizing automated test cases in the Synchronizing automated test
cases concept description.

The following example shows the available options within this sub-section.

"synchronization": {

"automation": {
"enabled": true,
"skipForTags": "@manual",
"testExecutionStrategy": "assemblyBasedExecution"

s

3

Settings

e enabled - Specifies whether SpecSync should attempt to create automated test cases.
(Default: false)

e skipForTags --Atag expression of scenarios that should be excluded from automation
(e.g. emanual or @planned). (Default: [all test cases synced as automated))

* testExecutionStrategy - Specifies the test execution strategy for the automated test
cases. Check Synchronizing automated test cases for details about the execution
strategies. Available options: assemblyBasedExecution , testSuiteBasedExecution ,

testSuiteBasedExecutionWithScenarioOutlineWrappers and none (Default: not set)

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-automation

12

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases
http://speclink.me/tagexpressions
https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases

7/27/2020 automation - SpecSync for Azure DevOps Documentation

[Back to the synchronization Configuration]

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-automation 2/2

https://specsolutions.gitbook.io/specsync/configuration
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization

7/27/2020 state - SpecSync for Azure DevOps Documentation

state

This configuration section contains settings to configure how the test case state field should be
updated.

The following example shows the available options within this sub-section.

"synchronization": {

"state": {
"setValueOnChangeTo":
3,

I

Settings

e setValueOnChangeTo -- A state value (e.g. Design) to set test case state to when
updating or creating a test case during synchronization. Useful for setting back Ready test

casesto Design on change. (Default: [don't change test case state))
[Back to the synchronization Configuration]

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-state

m

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 areaPath - SpecSync for Azure DevOps Documentation

areaPath

This configuration section contains settings to configure how the test case area path field
should be updated.

Read more about the setting the area path and iteration path fields in the Add new test cases to
an Area or an lteration concept description.

The following example shows the available options within this sub-section.

"synchronization": {

"areaPath": {
"mode": "setOnLink",
"value": "\\MyArea"
s

I

Settings

* mode - Specifies how the area path of the test case should be updated. Available options:
notSet and setoOnLink .(Default: notSet)
o notSet :the pathis not set
o setOnLink :set the path when the test case created and linked to the scenario, but not
to update later on.

e value - The area path to set for test cases (e.g. \\MyArea). The project name prefix can
be omitted.

[Back to the synchronization Configuration]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-areapath 1/2

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/important-concepts/add-new-test-cases-to-an-area-or-an-iteration

7/27/2020 areaPath - SpecSync for Azure DevOps Documentation

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-areapath 2/2

https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 iterationPath - SpecSync for Azure DevOps Documentation

iterationPath

This configuration section contains settings to configure how the test case iteration path field
should be updated.

Read more about the setting the area path and iteration path fields in the Add new test cases to
an Area or an lteration concept description.

The following example shows the available options within this sub-section.

"synchronization": {

"jterationPath": {
"mode": "setOnLink",
"value": "\\Iterationl"

s

I

Settings

* mode - Specifies how the iteration path of the test case should be updated. Available
options: notSet and setOnLink . (Default: notSet)
o notSet :the pathis not set
o setOnLink :set the path when the test case created and linked to the scenario, but not
to update later on.
e value - The iteration path to set for test cases (e.g. \\Iterationi). The project name
prefix can be omitted.

[Back to the synchronization Configuration]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-iterationpath 1/2

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/important-concepts/add-new-test-cases-to-an-area-or-an-iteration

7/27/2020 iterationPath - SpecSync for Azure DevOps Documentation

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-iterationpath 2/2

https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 links - SpecSync for Azure DevOps Documentation

links

This configuration section contains settings to configure how test case links should be updated

based on the tags of the scenario.

Read more about synchronizing test case links in the Linking work items using tags concept
description.

The following example shows how this sub-section can be used to specify a single link type.

"synchronization": {

"links": [
{
"tagPrefix": "bug"

The following example shows the available options within this sub-section. This example

configures two link types.

"synchronization": {

"links": [
{

"tagPrefix": "pbi",
"targetWorkItemType": "ProductBacklogItem",
"relationship": "Parent",
"mode": '"createIfMissing"
1,
{

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-links 1/2

https://specsolutions.gitbook.io/specsync/important-concepts/linking-work-items-with-tags

7/27/2020 links - SpecSync for Azure DevOps Documentation

"tagPrefix": "bug"
}
1,

I

Settings

The 1links sub-section contains an array of link type configurations. Each of them is used to

configure a link type. (The second example above configures two link types.)
For each link type configuration the following settings can be used.

e tagPrefix - Atag prefix for specifying the relation for the scenario. E.g. specify pbi for
linking product backlog items using a tag, like @pbi:1234 . (Mandatory.)

* targetWorkItemType -- The type of the Azure DevOps work item the link refers to. (Default:
[Can link to any work item type])

e relationship -- Specify the relationship for the created link. E.g. specifying Parent

means that the linked work item will be the parent of the test case work item. (Default:
Tests relationship is established)

mode -- Specifies how the links are updated. Available options: createIfMissing .
(Default: createIfMissing)
o createIfMissing -- SpecSync only creates links but never removes them, even if the

tag has been removed from the scenario.

[Back to the synchronization Configuration]

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-links 2/2

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization
https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 format - SpecSync for Azure DevOps Documentation

format

This configuration section contains settings to configure the format of the synchronized test
case.

Read more about the test case format options in the Configuring the format of the synchronized
test cases concept description.

The following example shows the available options within this sub-section.

"synchronization": {

"format": {
"useExpectedResult": false,
"syncDataTableAsText": false,
"prefixBackgroundSteps": true,
"prefixTitle": true
}
I

Settings

e useExpectedResult - If setto true, Then steps will be synchronized to the Expected result
field of the test case steps. (Default: false)
e syncDataTableAsText --If setto true, DataTables will be synchronized as plain text instead
of HTML tables. (Default: false)
e prefixBackgroundSteps - If setto true, Background steps will be synchronized with the
Background: prefix. (Default: true)
e prefixTitle - If setto true, test case title will be synchronized with the Scenario: or

Scenario Outline: prefix. (Default: true)

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format 1/2

https://specsolutions.gitbook.io/specsync/important-concepts/configuring-the-format-of-the-synchronized-test-cases

7/27/2020 format - SpecSync for Azure DevOps Documentation

[Back to the synchronization Configuration]

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization/configuration-synchronization-format 2/2

https://specsolutions.gitbook.io/specsync/configuration
https://specsolutions.gitbook.io/specsync/configuration/configuration-synchronization

7/27/2020 publishTestResults - SpecSync for Azure DevOps Documentation

publishTestResults

This configuration section contains settings related to publishing TRX test results.

To read more about publishing test results see the "Assembly based execution strategy" section

of the Synchronizing automated test cases article.

The following example shows the available options within this section.

"publishTestResults": {
"testConfiguration": {
"name": "Windows 10"

s

"testResult": {
"filePath": "test-result.trx"

Settings:

* testConfiguration - Specifies a test configuration within the Azure DevOps project as a

target configuration for publishing test results.
o testConfiguration/name -- The name of the test configuration.

o testConfiguration/id - The ID of the test configuration.
e testResult - The TRX test result configuration.
o testResult/filePath -- The path of the TRX file. Can also be specified as a

command line parameter.

https://specsolutions.gitbook.io/specsync/configuration/publishtestresults 11

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases

7/27/2020 specFlow - SpecSync for Azure DevOps Documentation

specFlow

This configuration section contains settings related to synchronizing SpecFlow projects. These
settings are only required for synchronizing automated test cases. See Synchronizing automated
test cases for more details.

The following example shows the available options within this section.

"specFlow": {
"specFlowGeneratorFolder": "..\\packages\\SpecFlow.2.3.0\\tools",
"scenarioOutlineAutomationWrappers": "diterateThroughExamples",

"wrapperMethodPrefix": "_SpecSyncWrapper_",
"wrapperMethodCategory": "SpecSyncWrapper"
+s

Settings

* specFlowGeneratorFolder -- The path of the SpecFlow generator folder used by the
project, that is usually the tools folder of the SpecFlow NuGet package, e.qg.

packages\\SpecFlow.2.3.0\\tools . (Default: [detect generator of the project))

* scenarioOutlineAutomationWrappers -- Specifies how automation wrapper methods
should be generated for synchronizing scenario outlines to automated test cases. Available
options: useTestCaseData and qiterateThroughExamples . (Default:

iterateThroughExamples)

o useTestCaseData --the generated wrapper method loads the test data for the
iterations from the test case. Running the test cases through this wrapper in Azure
DevOps generates a detailed report about each iteration, but it cannot be executed
locally and also does not work in from Azure DevOps pipeline build. See related section
of the Synchronizing automated test cases article for details.

https://specsolutions.gitbook.io/specsync/configuration/configuration-specflow

12

https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases
https://specsolutions.gitbook.io/specsync/important-concepts/synchronizing-automated-test-cases#use-testcase-data-for-scenario-outline-examples-for-legacy-mstest-v1-projects

7/27/2020 specFlow - SpecSync for Azure DevOps Documentation
o dterateThroughExamples --the generated wrapper method iterates through the

examples and runs the test for each. A failure of an iteration does not block the
remaining iterations. Running the test cases through this wrapper in Azure DevOps
generates a single entry in the report, but the details of the entry contain all executed
data set.

* wrapperMethodPrefix - The method prefix to be used for the generated automation

wrapper methods. (Default: _SpecSyncWrapper_)
* wrapperMethodCategory -- The test category (trait) be added for the generated automation

wrapper methods. (Default: SpecSyncWrapper)

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-specflow

212

https://specsolutions.gitbook.io/specsync/configuration

7/27/2020 customizations - SpecSync for Azure DevOps Documentation

customizations

This configuration section contains settings for configuring customizations.
Note: The customizations described here are Enterprise features.

The following example shows the available options within this section.

"customizations": {
"branchTag": {
"enabled": true,
"prefix": "tc.mybranch"
s
"fieldDefaults": {
"enabled": true,
"defaultValues": {
"MyCompany .MyCustomField": "Default 1",
"MyCompany .OtherCustomField": "Default 2"
}
s
"jgnoreTestCaseSteps": {
"enabled": true,
"ignoredPrefixes": ["COMMENT"]
by
"customFieldUpdates'": {
"enabled": true,
"updates": {
"System.Description": "Syncronized from feature {feature-name}{br}{

Settings

https://specsolutions.gitbook.io/specsync/configuration/configuration-customizations 1/2

https://specsolutions.gitbook.io/specsync/licensing

7/27/2020 customizations - SpecSync for Azure DevOps Documentation
* branchTag -- Supports synchronization of scenarios on a feature branch.
© branchTag/enabled - Enables the customization. (Default: false)
o branchTag/prefix -- The tag prefix to be used for linking scenarios that are updated
on a branch. E.g. the prefix tc.mybranch will generate tags, like @tc.mybranch:1234 .
e fieldDefaults -- Enables setting default values to test case fields. Useful for custom

Azure DevOps process templates.
o fieldDefaults/enabled -- Enables the customization. (Default: false)

o fieldDefaults/defaultValues - A list of key-value pair, where the key is the
canonical name of the field to be updated (e.g. System.Description) and the value is
the default value to be used when the test case is created.

e dgnoreTestCaseSteps - Can ignore (leave unchanged) test case steps with a specific

prefix.
o dgnoreTestCaseSteps/enabled - Enables the customization. (Default: false)

o dgnoreTestCaseSteps/ignoredPrefixes -- An array of prefixes. The test case steps
that start with any of the listed prefixes (case-insensitive) will be ignored by the
synchronization.

e customFieldUpdates - Enables updating test case fields that are normally not changed by
SpecSync.

© customFieldUpdates/enabled - Enables the customization. (Default: false)

°o customFieldUpdates/updates -- A list of key-value pair, where the key is the canonical
name of the field to be updated (e.g. System.Description) and the value is the
template to be used to update the field. The template can contain the following
placeholders

» {feature-name} --the name of the feature (specified in the feature file header)
» {feature-description} --the description of the feature (the free-text block

specified after the feature file header)

» {scenario-name} -the name of the scenario or scenario outline

" {scenario-description} --the description of the scenario or scenario outline

* {feature-file-name} - the file name of the feature file (without folder)

» {feature-file-folder} --the folder of the feature file, relative to the project root
» {feature-file-path} - the path (folder and file name) of the feature file, relative

to the project root

[Back to the Configuration guide]

https://specsolutions.gitbook.io/specsync/configuration/configuration-customizations 2/2

https://specsolutions.gitbook.io/specsync/configuration

